Cycles, phase synchronization, and entrainment in single-species phytoplankton populations.

نویسندگان

  • Thomas M Massie
  • Bernd Blasius
  • Guntram Weithoff
  • Ursula Gaedke
  • Gregor F Fussmann
چکیده

Complex dynamics, such as population cycles, can arise when the individual members of a population become synchronized. However, it is an open question how readily and through which mechanisms synchronization-driven cycles can occur in unstructured microbial populations. In experimental chemostats we studied large populations (>10(9) cells) of unicellular phytoplankton that displayed regular, inducible and reproducible population oscillations. Measurements of cell size distributions revealed that progression through the mitotic cycle was synchronized with the population cycles. A mathematical model that accounts for both the cell cycle and population-level processes suggests that cycles occur because individual cells become synchronized by interacting with one another through their common nutrient pool. An external perturbation by direct manipulation of the nutrient availability resulted in phase resetting, unmasking intrinsic oscillations and producing a transient collective cycle as the individuals gradually drift apart. Our study indicates a strong connection between complex within-cell processes and population dynamics, where synchronized cell cycles of unicellular phytoplankton provide sufficient population structure to cause small-amplitude oscillations at the population level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entrainment of circadian rhythms to irregular light/dark cycles: a subterranean perspective

Synchronization of biological rhythms to the 24-hour day/night has long been studied with model organisms, under artificial light/dark cycles in the laboratory. The commonly used rectangular light/dark cycles, comprising hours of continuous light and darkness, may not be representative of the natural light exposure for most species, including humans. Subterranean rodents live in dark undergroun...

متن کامل

Integrative and Comparative Biology

Synopsis Flies of the genus Arachnocampa are sit-and-lure predators that use bioluminescence to attract flying prey to their silk webs. Some species are most common in rainforest habitat and others inhabit both caves and rainforest. We have studied the circadian regulation of bioluminescence in two species: one found in subtropical rainforest with no known cave populations and the other found i...

متن کامل

Optimal Subharmonic Entrainment

For many natural and engineered systems, a central function or design goal is the synchronization of one or more rhythmic or oscillating processes to an external forcing signal, which may be periodic on a different time-scale from the actuated process. Such subharmonic synchrony, which is dynamically established when N control cycles occur for everyM cycles of a forced oscillator, is referred t...

متن کامل

Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system.

In their ultradian (2- to 3-hr) feeding rhythm, common voles show intraindividual synchrony from day to day, as well as interindividual synchrony between members of the population, even at remote distances. This study addresses the question of how resetting of the ultradian rhythm, a prerequisite for such synchronization, is achieved. Common voles were subjected to short light-dark cycles (1 hr...

متن کامل

Synchronization of the Drosophila circadian clock by temperature cycles.

The natural light/dark and temperature cycles are considered to be the most prominent factors that synchronize circadian clocks with the environment. Understanding the principles of temperature entrainment significantly lags behind our current knowledge of light entrainment in any organism subject to circadian research. Nevertheless, several effects of temperature on circadian clocks are well u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2010